Climate Tech Lab Downscaling with Generative Al

September 2025

642

The (In)Climate Tech Lab | Core Team

DR. JONATHAN FERRER-MESTRES
Lead Applied Al Scientist

INCEPTION
A G42 company

ADAH KIBET
Applied Scientist

JI-EUN PARK
Business Lead

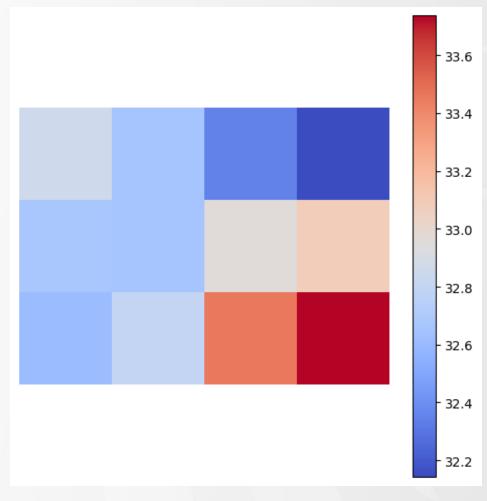
DR. NASEEMA SHYJUSenior Scientist

JIA-JING GU
Senior Product Manager
INCEPTION
A 642 company

DR. JUSSI LEINONEN
Solution Architect

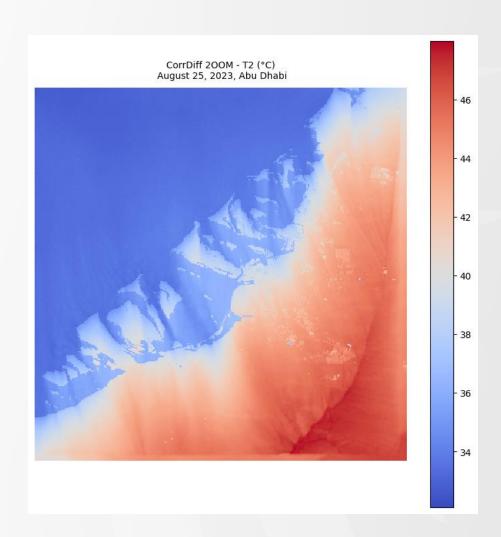
The Need for Downscaling: From Global Models to Local Insights

Where is this place (ERA5 ~25 km of resolution)?



The Need for Downscaling: From Global Models to Local Insights

Abu Dhabi at 200m of resolution!



The importance of high-resolution forecasting

Urban Heat

High-resolution forecasts help identify urban heat islands and protect vulnerable populations.

Agriculture

Small-scale weather patterns affect management decisions (irrigation, pest control) and crop yields. Farmers need localized forecasts for effective decision-making.

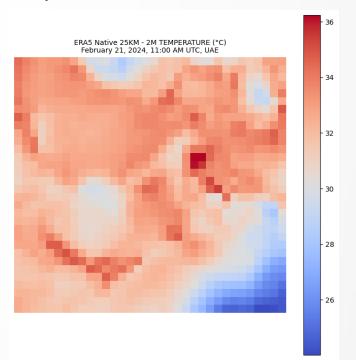
Disaster Preparedness

Floods, dust storms, and cyclones can have devastating impacts. High-resolution forecasting supports early warning systems and emergency planning.

The Need for Downscaling: From Global Models to Local Insights

Global coarse resolutions datasets:

Examples: ERA5



Strengths:

Physics-based Long-term forecast

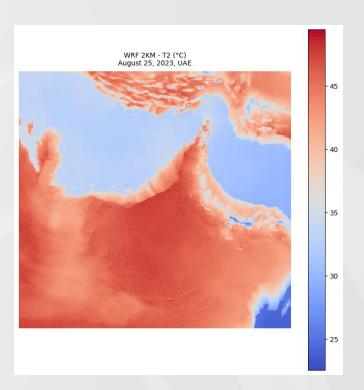
Ensemble capabilties Multi-variable output

Limitations:

Coarse spatial resolution (10-50km)
Limited for decision-making at city or infrastructure scale.
Computational expensive
Slow

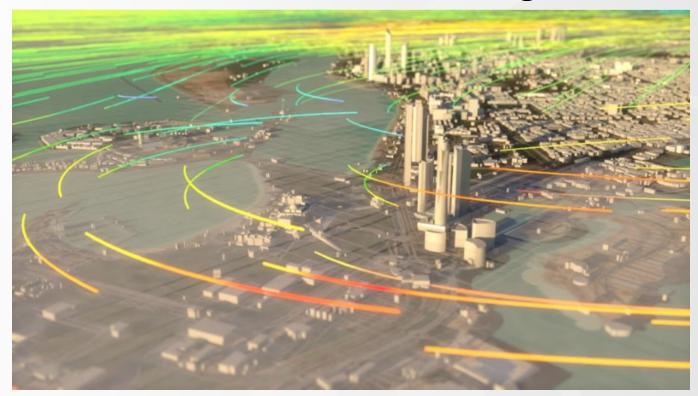
NWP Models:

Examples: WRF



Downscaling Approaches

- 1. Dynamical downscaling
- 2. Statistical downscaling
- 3. Al based donwscaling (non-Generative)
- 4. Generative AI downscaling



Downscaling Approaches: Dynamical Downscaling

What it is & How it works:

A high resolution regional model (e.g. WRF) is nested inside a coarse global NWP model

The coarse model provides boundary conditions (temperature, wind, ...)

The regional model resolves small-scale phenomena

Pros and Cons:

Pros:

Physically consistent
Interpretable
Flexible
Widely used & validated

Cons:

Computationally expensive
Limited coverage
Dependent on boundary conditions
Time-consuming

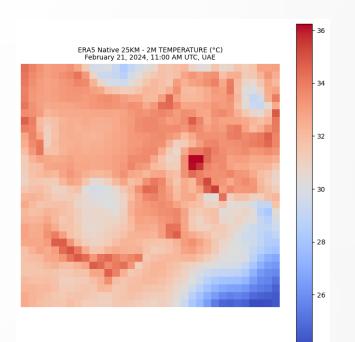
Downscaling Approaches: Statistical Downscaling (non-AI)

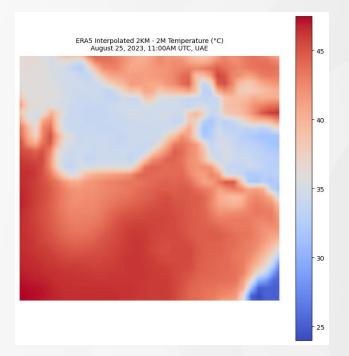
What it is & How it works:

Uses **statistical relationships** to map coarse NWP outputs to fine-scale variables.

Can include:

Linear regression
Bias correction





Pros and Cons:

Pros

Fast and computationally inexpensive Simple to implement

Cons:

Limited generalization
Fails to capture extremes
Spatial patterns may be unrealistic

Downscaling Approaches: Machine Learning

What it is & How it works:

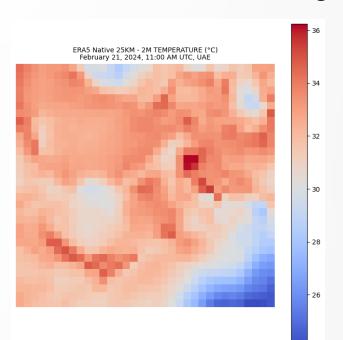
Uses **machine learning algorithms** to learn relationships between coarse NWP outputs and high-resolution observations.

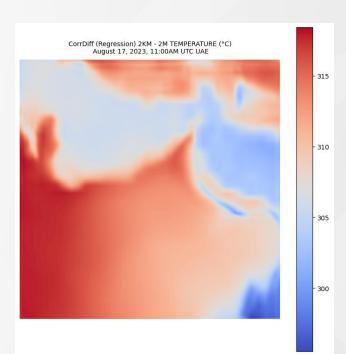
Typical approaches:

Convolutional Neural Networks (CNNs)

Random Forests

Gradient Boosting





Pros and Cons:

Pros:

Flexible

Fast at inference

Captures non-linear patterns

Cons:

Data hungry

May not respect physics

Training is resource-intensive

Generalization risk

Downscaling Approaches: Generative AI based

What it is & How it works:

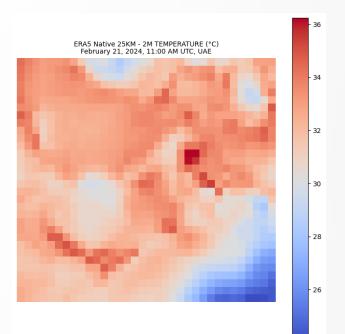
Uses **generative AI models** to progressively refine coarse NWP forecasts into high-resolution fields.

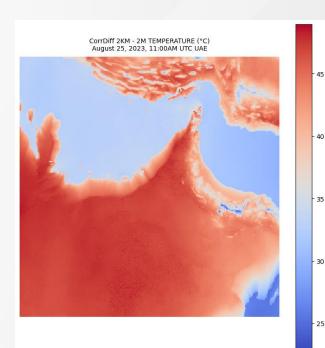
Methods include:

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

Diffusion models





Pros and Cons:

Fast once trained

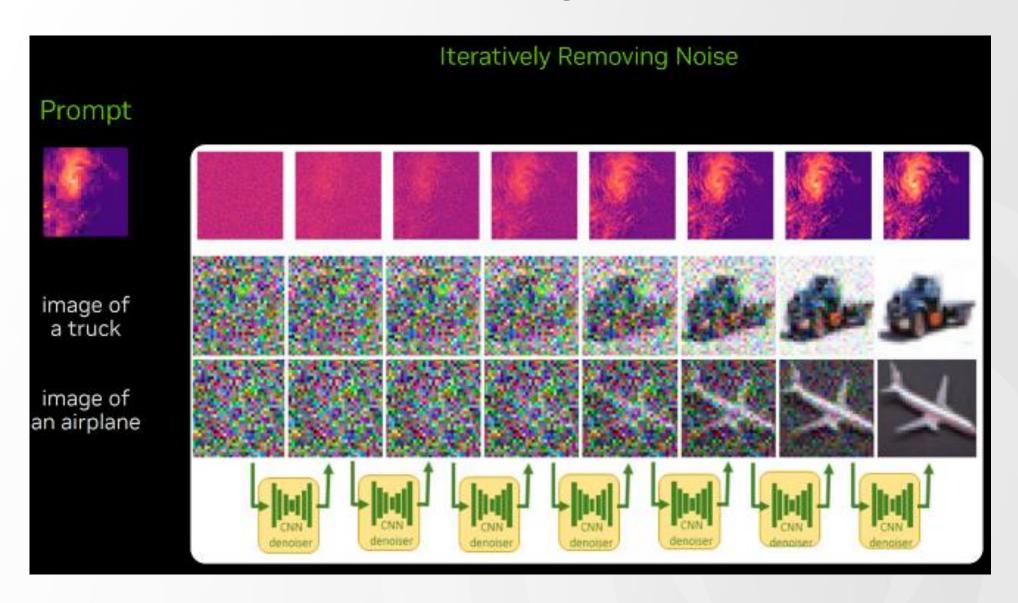
Pros:

Captures complex spatial and temporal patterns beyond traditional ML Provides uncertainty estimates Flexible

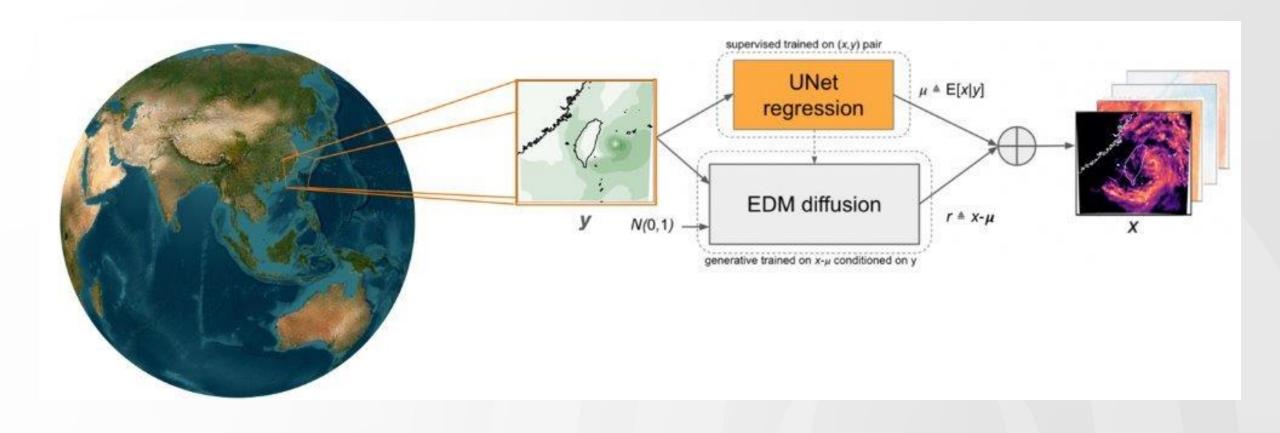
Cons:

Prone to model collapse (GANs)
Training intensive
Inference may require multiple GPUs
Risk of artifacts

Diffusion Models for Downscaling



Correction Diffusion Model (Corrdiff)



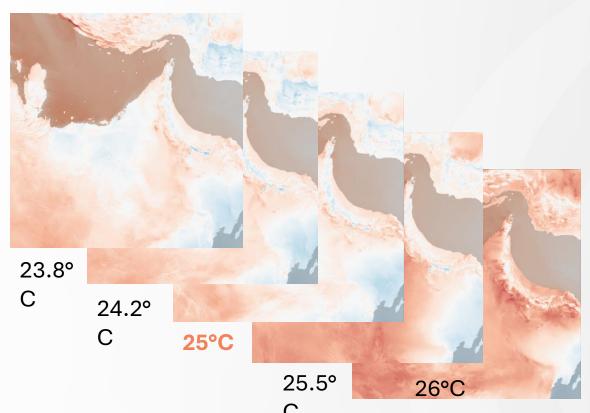
How quantifying the uncertainties of Climate can provide better visibility into possible futures and solutions

We quantify uncertainties

- Baseline models predicts expected values
- A diffusion model learns the probability distribution of the residuals

Mean output: 25°C

Residual prediction: ±1.5°C



Key Advantages:

Learning the small-scale physics

Improved prediction of extreme weather events

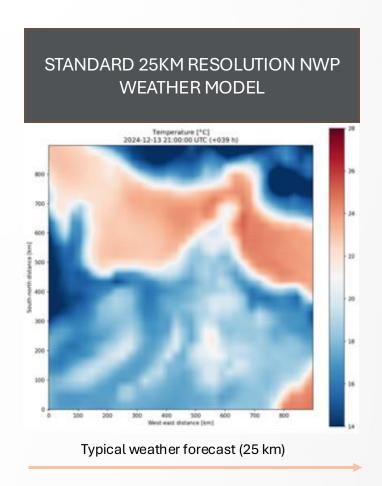
Better decision making and risk assessment

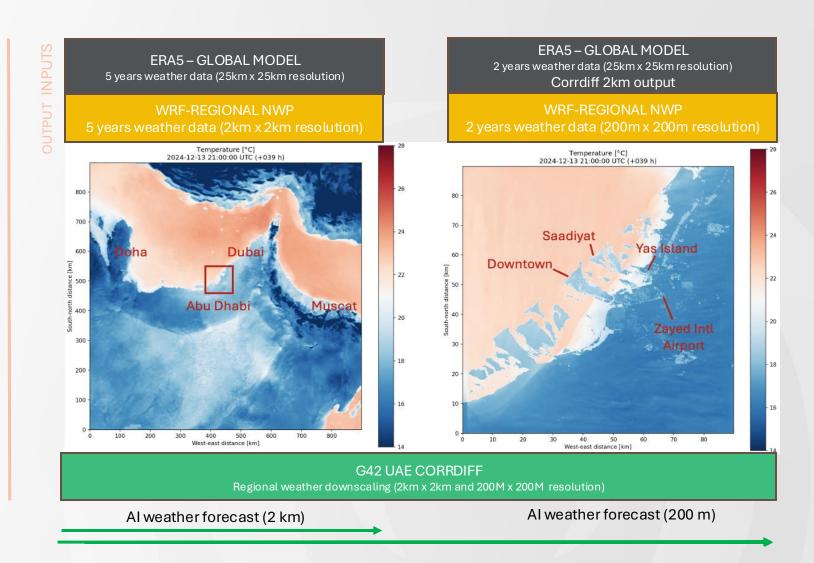
Reduction in biases = more reliable forecasting

Model trust and interpretability

Optimize resource allocation and preparedness

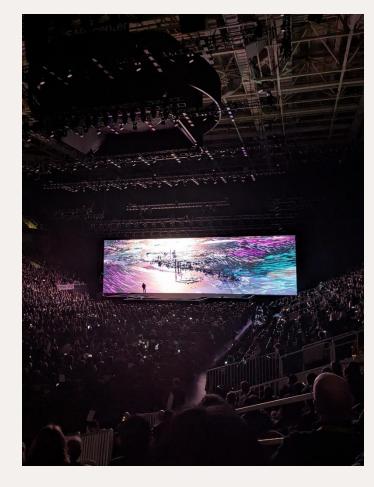
UAE Corrdiff: What do we need?



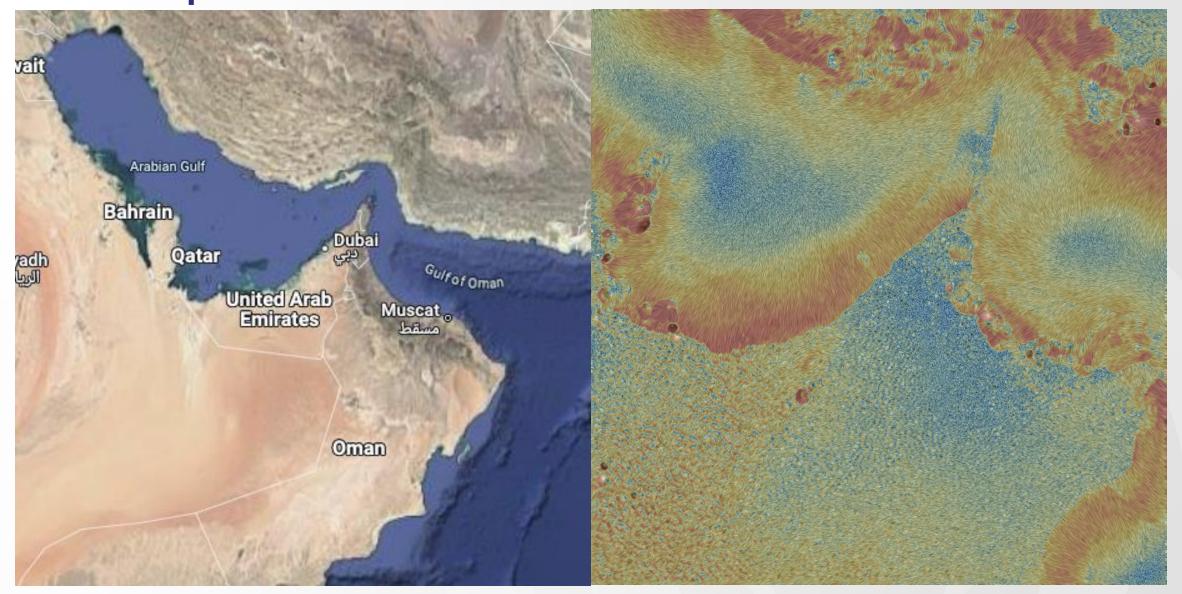


Our work was presented at NVIDIA GTC 2025!

- NVIDIA's Flagship AI conference
- In front of ~25,000 in-person attendees
- Part of NVIDIA's CEO keynote
- Dedicated **booth** with interactive **demos** running for 3 consecutive days



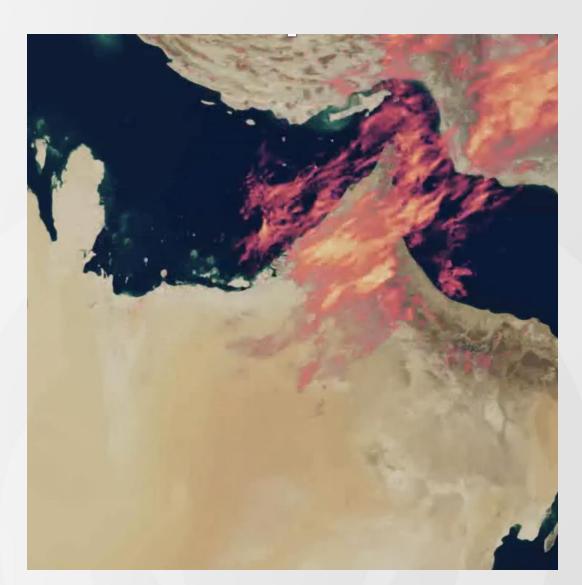
Our model is very good at learning small-scale physics: See example of Wind



Extreme weather prediction: Rainfall

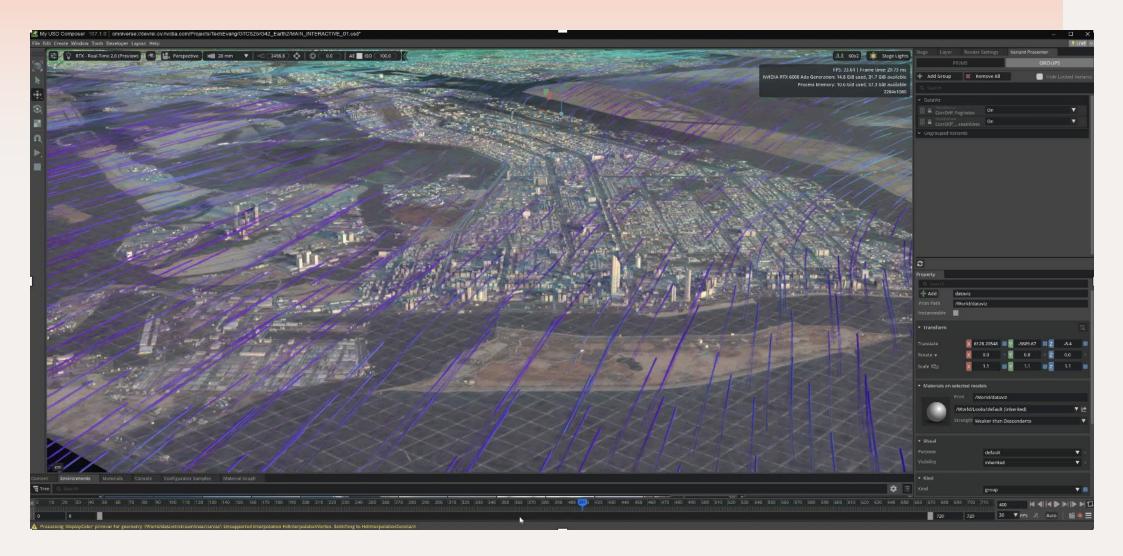
- Extreme events are rare and underrepresented
 - Uncertainty quantification allows models to generate multiple possible outcomes
- Many extreme events are driven by **fine-scale physical processes** (e.g., turbulence, convection).
 - Small variations in initial conditions can significantly impact event severity
- Traditional models struggle where observational data is limited (e.g., remote areas, oceanic regions).
 - Uncertainty-aware methods can infer missing details and provide more robust predictions.

Rainfall 16/04/2024 Reported total amount of 259.5mm Predicted 260 mm



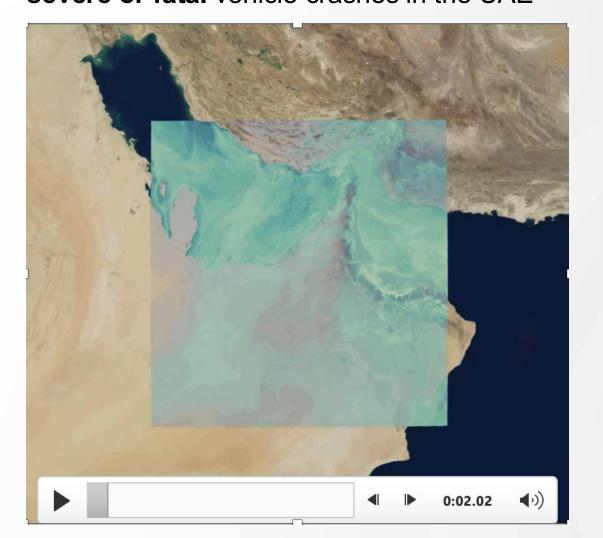
Our weather model can be customized to specific conditions and additional datasets

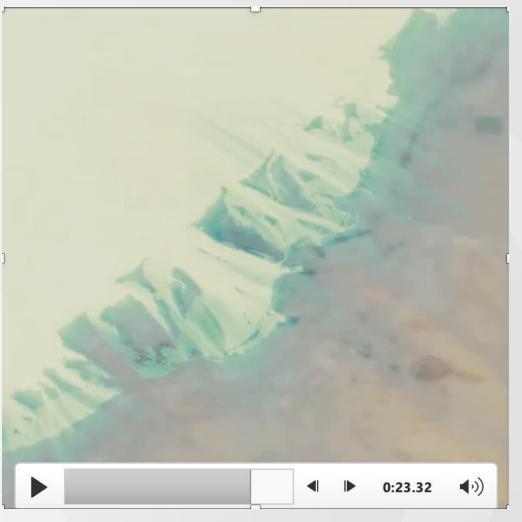
Our model can be tuned for local "pain points" such as dense sea-fog, dust storms, coastal flooding and 50 °C heat bursts—hazards that regularly disrupt UAE operations.



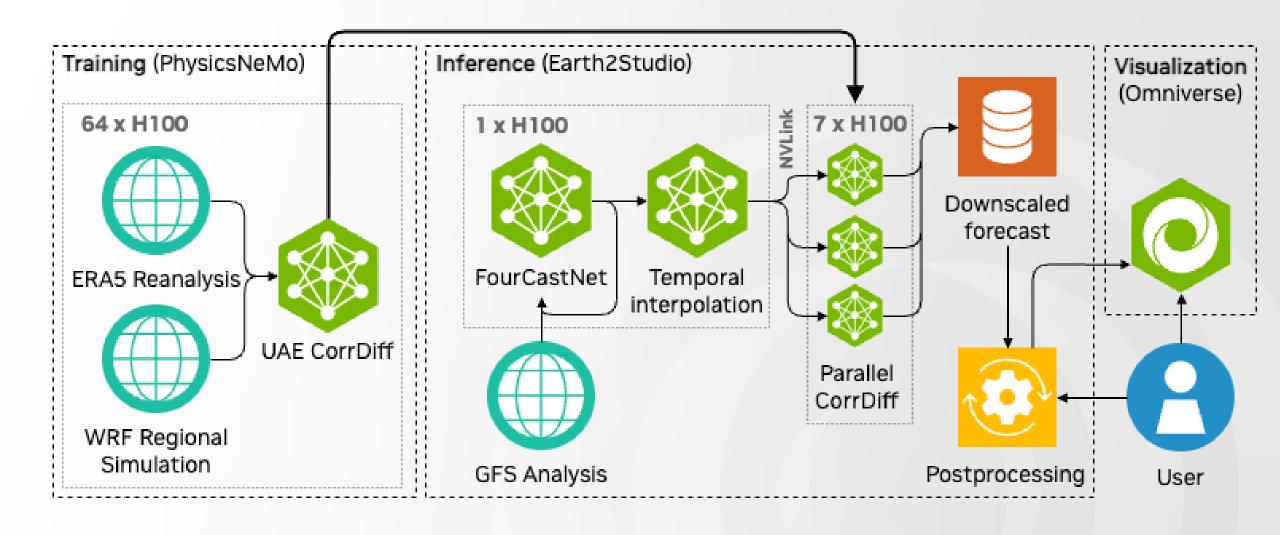
How can a 14-day fog forecast save lives?

While only a small percentage of crashes, foggy or dusty weather was linked to **2% of severe or fatal** vehicle crashes in the UAE





Building a High Resolution Weather Forecasting Pipeline



Inference Pipeline

Data Retrieval

```
from earth2studio.data import GFS
data = GFS()
```


Forecasting

```
from earth2studio.models.px import SFNO
fc_model = SFNO.load_model(SFNO.load_default_package())
```


Interpolation

```
from earth2studio.enterprise.models.px import ForecastInterpolation
interp_model = ForecastInterpolation.load_model(
    Package(interp_package_path, cache=False),
    fc_model=fc_model
)
```


Downscaling

```
from earth2studio.enterprise.models.dx.corrdiff import CorrDiff
corrdiff_model = CorrDiff.load_model(
    Package(corrdiff_package_path, cache=False
)
```


Running the Workflow

```
from earth2studio.run import diagnostic
from earth2studio.io.netcdf4 import NetCDF4Backend
io = NetCDF4Backend(output_file)
time = ["2025-03-17T00:00:00"]
timesteps = 168
diagnostic(
   time, timesteps, interp_model, corrdiff_model, data, io,
   output_prognostic=False
)
```

How downscaling models for Weather change the Paradigm

DIMENSION	NWP / AI DOWNSCALERS	G42 × NVIDIA CORRDIFF STACK
Spatial scale	1–3 km at best for UAE; coarse urban detail. Typically 25KM grids	200 m Abu Dhabi grid nested inside 2 km UAE mesh
Inference latency	Forecasting time of 1–3h on large CPU clusters	< 2 min on 8× H100 GPUs (40× faster) making multiple forecast ensembles cost and time-effective
Compute cost	960 CPU-core-hours/day	~0.2 GPU-node-hours/day; 1 400× energy-efficient
Industrial integration	Stand-alone met service feeds	Able to run inside Core 42 cloud; API hooks to feed existing platforms and agentic workflows for automation

Jupyter Notebooks

Wrap-Up & Discussion

Why Downscaling Matters – Global models (10–50 km) miss critical local detail; diffusion-based downscaling delivers high-resolution (2–5 km) forecasts essential for urban heat, flooding, agriculture, and energy planning.

Diffusion & Correction Diffusion – By combining a regression step with diffusion refinement, we can progressively enhance coarse forecasts into realistic fine-scale features, while also quantifying uncertainty—something traditional methods struggle with.

Advantages over Classical Approaches – Compared to dynamical or empirical/statistical methods, diffusion models balance physical realism with computational efficiency, offering both scalability and adaptability to local contexts.

Impact in Practice – High-resolution diffusion downscaling is already being tested and used in real-world cases, showing strong potential to transform disaster preparedness, agricultural stress monitoring, and climate resilience planning.

