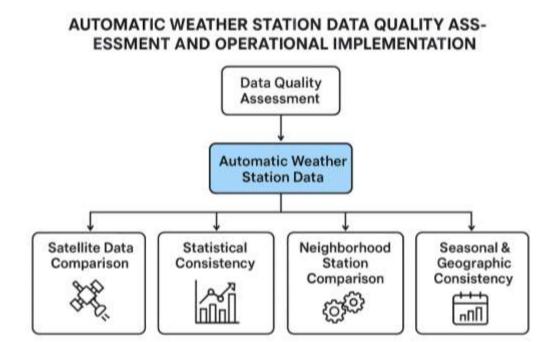


WEATHER PACKAGE

# TAHMO

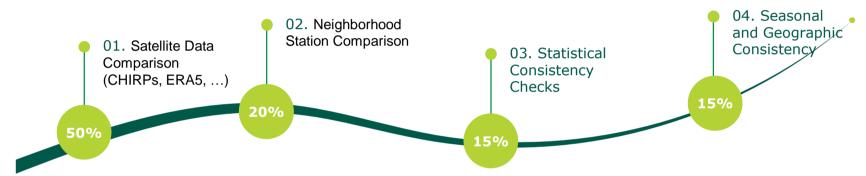
Data Quality Assurance and Quality Control(QA/QC)


#### Introduction

### Precipitation Data Quality Assessment and Operational Implementation

- AI models (e.g., GraphCast) depend on high-quality input data
- Precipitation is simple to measure, but hardest to ensure accuracy for both automatic and manual instruments
- O Ground stations validate & calibrate satellite products (CHIRPS, ERA5)
- O Satellites then provide reliable large-scale coverage

#### QA/QC Tailored to the approach used by TAHMO


- Observational datasets are prone to errors: instrument drift, environmental contamination, transmission loss, and observer bias
- Robust QA/QC procedures are required to ensure accuracy, reliability, and usability of data in operational forecasting
- Integrated frameworks (e.g., TAHMO) apply multitiered approaches: Internal consistency checks (range, step, and persistence tests), Spatial consistency checks, Climatological/homogeneity checks





#### AWS Data Quality Assessment

(Ecosystem of Tools and Approaches)



## Satellite Data Comparison

- Detects major biases in sensor observations
- Identifies inconsistencies in precipitation reporting (under/overestimation in satellite products and under/over-reporting from ground stations)

## **Neighborhood Station Comparison**

- · Ground truthing for Satellite
- Reduce false flags from satellite QAQC
- Limited by geography and local sensor reliability
- Most effective in dense networks with high spatial resolution

#### Statistical Consistency Checks

- Detect spikes, unrealistic values, and sensor drifts.
- Multi-Parameter Correlation Checks
- Enables real-time anomaly detection
- Applies automated threshold rules for parameter ranges

## Seasonal and Geographic Consistency

Ensure data reflects expected climatic/seasonal patterns.

- Compare seasonal averages with historical climatology
- Detect deviations (climatological thresholds, history, neighbors)

AIM FOR SCALE



#### Example: AWS Data Quality Assessment

(Satellite products + neighbor comparison + Statistical Consistency)

#### Positive Bias - List of stations with suspected fault

|         |         | Station                   | min      | m ax                |  |
|---------|---------|---------------------------|----------|---------------------|--|
|         |         | Precipitation<br>total mm |          | precipitation       |  |
| Station | Date    | (monthly)                 | & GSMap) | mm (CHIRPs & GSMap) |  |
| TA00784 |         | 2416                      |          | 333.6               |  |
|         |         |                           |          |                     |  |
| TA00416 | 2025-08 | 1270.9                    | 13.4     | 86.5                |  |
| TA00813 | 2025-08 | 399                       | 37.2     | 102.6               |  |
| TA00436 | 2025-08 | 332                       | 41.5     | 73.2                |  |
| TA00119 | 2025-08 | 115                       | 0.2      | 40.7                |  |
| TA00679 | 2025-08 | 103                       | 2.9      | 41.9                |  |
| TA00196 | 2025-08 | 99.5                      | 1.1      | 36.1                |  |
| TA00588 | 2025-08 | 97.4                      | 21.5     | 30.1                |  |
| TA00057 | 2025-08 | 55.6                      | 0.9      | 22.2                |  |

|                            | 8064 | 28 days month |
|----------------------------|------|---------------|
| Expected<br>Sensor records | 8352 | 29 days month |
| count<br>(persistence)     | 8640 | 30 day month  |
|                            | 8928 | 31 days month |



2025-08

|         | TA00784       | Sensor    |         |         |
|---------|---------------|-----------|---------|---------|
|         | Recorded      | records   |         |         |
|         | Precipitation | count     |         |         |
| Date    | (Monthly)     | (Monthly) | GSMaP   | CHIRPS  |
| 2025-01 | 0             | 8928      | 0.679   | 0.78    |
| 2025-02 | 0             | 8064      | 0.508   | 0.025   |
| 2025-03 | 0             | 8913      | 0.284   | 0       |
| 2025-04 | 0             | 8640      | 0       | 0       |
| 2025-05 | 0             | 8928      | 3.344   | 2.563   |
| 2025-06 | 21.569        | 8640      | 22.349  | 39.553  |
| 2025-07 | 88.352        | 8928      | 101.566 | 159.242 |
| 2025-08 | 2415.999      | 8347      | 333.589 | 252.053 |

| 2025-08 | 2415.999      | 8347      | 333.589 | 252.053 |
|---------|---------------|-----------|---------|---------|
|         |               |           |         |         |
|         | TA00057       | Sensor    |         |         |
|         | Recorded      | records   |         |         |
|         | Precipitation | count     |         |         |
| Date    | (Monthly)     | (Monthly) | GSMaP   | CHIRPS  |
| 2025-01 |               | 0         | 27,462  | 96.138  |
| 2025-02 |               | 0         | 5.154   | 4.924   |
| 2025-03 | 141.168       | 4172      | 42,532  | 160.046 |
| 2025-04 | 280,296       | 8639      | 59,582  | 172.11  |
| 2025-05 | 205.887       | 8928      | 13.673  | 96.093  |
| 2025-06 | 31.253        | 8635      | 0.364   | 23.069  |
| 2025-07 | 12.176        | 8906      | 0.309   | 7.618   |



55,635

0.892

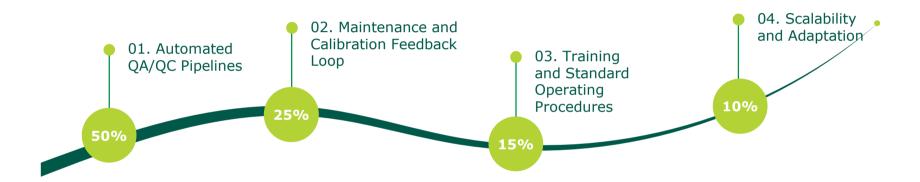
22,237



|            | Precipitation |       |        |        |
|------------|---------------|-------|--------|--------|
| Neigbors   | total mm      |       |        |        |
| to TA00784 | (08-2025)     | count | GSMaP  | CHIRPS |
| TA00908    | 200.192       | 8353  | 289.86 | 287.49 |
| TA00785    | 171.128       | 6955  | 323.93 | 224.51 |
| TA00782    | 21.176        | 8353  | 319.03 | 311.1  |



Positive flag -Sensor fault


|            | Precipitation |       |       |        |
|------------|---------------|-------|-------|--------|
| Neigbors   | total mm      |       |       |        |
| to TA00057 | (08-2025)     | count | GSMaP | CHIRPS |
| TA00025    | 42            | 8353  | 2.882 | 40.054 |
| TA00066    | 41.367        | 8353  | 2,402 | 48.261 |
| TA00080    | 39.744        | 8329  | 3.798 | 42.12  |
| TA00024    | 50.267        | 6235  | 0.421 | 25.149 |



False Precipitation flag - under estimation of CHIRPs

neighbor comparison

#### Operational Implementation Considerations



### Automated QA/QC Pipelines

- Implement software frameworks for real-time data validation
- · Data Flagging and Metadata
- Integration with Satellite and External Datasets

## Maintenance and Calibration Feedback Loop

Maintain historical records for predictive maintenance

## Training and Standard Operating Procedures

- Train personnel on QA/QC protocols and flag interpretation
- Define clear SOPs for data handling

## Scalability and Adaptation

Incorporate ML for advanced anomaly detection



#### **QAQC** based on Parallel measurements



#### **Parallel measurements**

Manual rain gauge at ground level, Automatic gauge at 0.3m height, TAHMO at 2m

May be used for bench marking



#### **Sensor Redundancy**

AWS with duo sensors for precipitation

Most effective approach for anomaly detection in real time from AWS precipitation data through automated QAQC



#### Parallel measurements With multiple technologies

Primary sensor 's QAQC may benefit from other sensors that utilize different measurement technology for the same weather parameter.

- Tipping bucket vs Drip count
- Ultrasonic vs Mechanical wind sensors





#### Contact Us



**Email:** info@aimforscale.org **Web:** www.aimforscale.org

